

NILASAILAINSTITUTEOFSCIENCE&TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE & affiliated to SCTE&VT, Odisha)

LESSONPLAN

SUBJECT:Th1.ENGINEERINGMATHEMATICS-III

CHAPTERWISEDISTRIBUTIONOFPERIODS

Sl.No.	NameofthechapteraspertheSyllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	ComplexNumbers	6	6
2	Matrices	4	4
3	DifferentialEquations	10	10
4	Laplacetransforms	12	12
5	FourierSeries	12	12
6	NumericalMethods 4		
7	Finitedifference&interpolation 12		12
	TOTAL	60	60

Discipline: EE/EEE	Semester: 3RD	Name of the Teaching Faculty :SAGARIKA TRIPATHY	
Week	ClassDay	Theory/Practical Topics	
	1 st	1.Complex Numbers	
		Realand Imaginarynumbers	
	2 nd	1.2 Complexnumbers, conjugate complex numbers, Modulus and Amplitude of a	
1ST		complex number	
	3 rd	GeometricalRepresentationofComplex Numbers.	
		Properties of Complex Numbers	
	4 *	1. Specter mination of three cuberoots of unity and their properties.	
	1	1.6 Delvioivre's theorem	
	2"	1.7 Solveproblemson1·1 -1·6	
2010	3 rd	2. Matrices	
ZND		Definerankota matrix.	
		Performelementary rowtransformations to determinetnerankofa	
	4 th	2.3.State Rouche stheorem for consistency of a system of linear equations in	
	⊿ st	unknowns.	
	1 2 nd	2.4.Solve equations inthree unknownstesting consistency	
	Z	2.5.Solve problemson 2.1 – 2.4	
3RD	ərd	3. Linear Differential Equations	
	3'*	constant coefficients with examples	
	4 th	3.2.Find generalsolution oflinear DifferentialEquationsintermsof C.F.andP.I.	
	1 st		
		3.2.Find generalsolution of linear DifferentialEquationsinterms of C.F.andP.I.	
4TH	2 nd	3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding.	
	3 rd	3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding.	
	4 th	3.4.Definepartial differential equation(P.D.E)	
	1 st	3.5.Form partial differential equations by eliminating arbitrary constants and	
	-	arbitraryfunctions	
5TH	2 nd	3.5.Form partial differential equationsby eliminatingarbitrary constants and	
_	ərd	a Ditrary functions	
	3 Ath	3.6.Solvepartial differential equations of the form Pp+Qq= R	
	4	3.7.Solve problemson 3.1- 3.6	
бтн	1 st	4. LaplaceTransforms	
		Define Gamma function and and find.	
	2 nd	4.2.Detine Laplace Transformof afunction and Inverse LaplaceTransform .	
	3 rd	4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform .	
	4 th	4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform .	
	1 st	4.3.Derive L.T.of standard functionsand explain existence conditionsof L.T.	

7ТН	2 nd	4.3. Derive L.T. of standard functions and explain existence conditions of L.T.
	3 rd	4.4 Explain linear shiftingproperty of T
	4 th	4.5.Formulate L.T.of derivatives, integrals, multiplication by and division by.
	1 st	4.5.Formulate L.T.of derivatives, integrals, multiplication by and division by.
8TH	2 nd	4.6.Derive formulae of inverse L.T. and explain method of partialfractions .
	3 rd	4.6.Derive formulae of inverse L.T. and explain method of partialfractions .
	4 th	4.7.solve problemon 4.1- 4.6
	1 st 2 nd	5. Fourier Series
		Define periodic functions
		5.2.State Dirichlet'sconditionfor the Fourier expansion of a function and it's
9ТН		convergence
5	3 rd	5.2.State Dirichlet'sconditionfor the Fourier expansion of a function and it's
	•	convergence
	4 th	5.2.State Dirichlet's condition for the Fourier expansion of a function and it's
		CONVergence
	1 st	
		5.3.ExpressperiodicfunctionF(X)satisfyingDirichlet'sconditionsasaFourier
10TH	2 nd	series.
	3 rd	5.4.StateEuler's formulae
	4 th	5.5. Define Even and Oddfunctionsand find Fourier Series in
	1 st	5.5. Define Even and Oddfunctionsand find Fourier Series in
		5.6.Obtain F.Sof continuousfunctions and functions having points of
4470	2 nd	discontinuity
111H	3 rd	5.6.Obtain F.Sof continuousfunctionsand functionshavingpointsof
		discontinuity
	4 th	5.7.Solve problemson 5.1 –5.6
		6. Numerical Methods
	1 st	AppraiselimitationofanalyticalmethodsofsolutionofAlgebraic
		Equations.
		Derive Iterative formulaforfinding the solutions of Algebraic Equations by :
40711	2 nd	Bisection method
12TH		Newton-Raphsonmethod
		Derive Iterative formulaforfindingthe solutionsofAlgebraicEquationsby :
	3 rd	Bisection method
		Newton-Raphsonmethod
	4 th	6.3.solve problemson 6.2
	1 st	7. Finitedifferenceandinterpolation
13ТН		Explainfinite difference and form table of forward and backwarddifference
	2 nd	
		7.2. Define shift Operator and establish relation between& difference operator
-3		

	3 rd	7.3.Derive Newton'sforward andbackward interpolationformulafor equal intervals
	4 th	7.4.StateLagrange's interpretation formula forunequal intervals.
14TH	1 st	Explainnumericalintegrationand state: Newton'sCote's formula
	2 nd	Newton'sCote's formula
	3 rd	7.5.2.Trapezoidalrule
	4 th	7.5.2.Trapezoidalrule
15TH	1 st	7.5.2.Trapezoidalrule
	2 nd	7.5.3.Simpson's1/3rdrule
	3 rd	7.5.3.Simpson's1/3rdrule
	4 th	7.6.Solve problemson 7.1- 7.5

Sign.OfFaculty

Sign.OfHOD