| NILASAILAINSTITUTEOFSCIENCE\&TECHNOLOGY |
| :---: |
| SERGARH-756060, BALASORE (ODISHA) |
| (Approved by AICTE \& affiliated to SCTE\&VT, Odisha) |
| LESSONPLAN |
| SUBJECT:Th1.ENGINEERINGMATHEMATICS- III |

## CHAPTERWISEDISTRIBUTIONOFPERIODS

| SI.No. | NameofthechapteraspertheSyllabus | No. of <br> Periods <br> as per <br> the <br> Syllabus | No. of <br> periods <br> actually <br> needed |
| :---: | :--- | :---: | :---: |
| 1 | ComplexNumbers | 6 | 6 |
| 2 | Matrices | 4 | 4 |
| 3 | DifferentialEquations | 10 | 10 |
| 4 | Laplacetransforms | 12 | 12 |
| 5 | FourierSeries | 12 | 12 |
| 6 | NumericalMethods | 4 | 4 |
| 7 | Finitedifference\&interpolation | 12 | 12 |
|  |  |  |  |


| Discipline: EE/EEE | Semester: 3RD | Name of the Teaching Faculty :SAGARIKA TRIPATHY |
| :---: | :---: | :---: |
| Week | ClassDay | Theory/Practical Topics |
| 1ST | $1^{\text {st }}$ | 1.Complex Numbers <br> Realand Imaginarynumbers |
|  | $2^{\text {nd }}$ | 1.2 Complexnumbers,conjugatecomplexnumbers, ModulusandAmplitude ofa complex number |
|  | $3^{\text {rd }}$ | GeometricalRepresentationofComplex Numbers. PropertiesofComplexNumbers |
|  | $4^{\text {th }}$ | 1.5Determinationofthreecuberootsofunity andtheirproperties. |
| 2ND | $1^{\text {st }}$ | 1.6 DeMoivre's theorem |
|  | $2^{\text {nd }}$ | 1.7 Solveproblemson1-1-1.6 |
|  | $3^{\text {rd }}$ | 2. Matrices <br> Definerankofa matrix. Performelementary rowtransformations to determinetherankofa |
|  | $4^{\text {th }}$ | 2.3.State Rouche'stheorem for consistencyof a systemof linear equations in unknowns. |
| 3RD | $1^{\text {st }}$ | 2.4.Solve equationsinthree unknownstestingconsistency |
|  | $2^{\text {nd }}$ | 2.5.Solve problemson 2.1-2.4 |
|  | $3^{\text {rd }}$ | 3.LinearDifferential Equations <br> DefineHomogeneousandNon-HomogeneousLinearDifferentialEquations with constant coefficients with examples |
|  | $4^{\text {th }}$ | 3.2.Find generalsolution oflinear DifferentialEquationsintermsof C.F.andP.I. |
| 4TH | $1^{\text {st }}$ | 3.2.Find generalsolution oflinear DifferentialEquationsintermsof C.F.andP.I. |
|  | $2^{\text {nd }}$ | 3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding. |
|  | $3{ }^{\text {rd }}$ | 3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding. |
|  | $4^{\text {th }}$ | 3.4.Definepartial differential equation(P.D.E) |
| 5TH | $1^{\text {st }}$ | 3.5.Form partialdifferential equationsby eliminatingarbitrary constants and arbitraryfunctions |
|  | $2^{\text {nd }}$ | 3.5.Form partialdifferential equationsby eliminatingarbitrary constants and arbitraryfunctions |
|  | $3{ }^{\text {rd }}$ | 3.6.Solvepartial differentialequations ofthe form Pp+Qq=R |
|  | $4^{\text {th }}$ | 3.7.Solve problemson 3.1-3.6 |
| 6TH | $1^{\text {st }}$ | 4. LaplaceTransforms <br> Define Gamma function andand find. |
|  | $2^{\text {nd }}$ | 4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform . |
|  | $3^{\text {rd }}$ | 4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform . |
|  | $4^{\text {th }}$ | 4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform . |
|  | $1^{\text {st }}$ | 4.3.Derive L.T.of standard functionsand explain existence conditionsof L.T. |


| 7TH | $2^{\text {nd }}$ | 4.3.Derive L.T.of standard functionsand explain existence conditionsof L.T. |
| :---: | :---: | :---: |
|  | $3^{\text {rd }}$ | 4.4.Explain linear,shiftingpropertyofL.T. |
|  | $4^{\text {th }}$ | 4.5.Formulate L.T.of derivatives, integrals,multiplication byand division by. |
| 8TH | $1^{\text {st }}$ | 4.5.Formulate L.T.of derivatives, integrals, multiplication byand division by. |
|  | $2^{\text {nd }}$ | 4.6.Derive formulae of inverse L.T. and explain method of partialfractions . |
|  | $3^{\text {rd }}$ | 4.6.Derive formulae of inverse L.T. and explain method of partialfractions . |
|  | $4^{\text {th }}$ | 4.7.solve problemon 4.1-4.6 |
| 9TH | $1^{\text {st }}$ | 5. Fourier Series <br> Define periodic functions |
|  | $2^{\text {nd }}$ | 5.2.State Dirichlet'sconditionfor the Fourier expansionof afunction andit's convergence |
|  | $3^{\text {rd }}$ | 5.2.State Dirichlet'sconditionfor the Fourier expansionof afunction andit's convergence |
|  | $4^{\text {th }}$ | 5.2.State Dirichlet'sconditionfor the Fourier expansionof afunction andit's convergence |
| 10TH | $1^{\text {st }}$ | 5.3.ExpressperiodicfunctionF(X)satisfyingDirichlet'sconditionsasaFourier series. |
|  | $2^{\text {nd }}$ | 5.3.ExpressperiodicfunctionF(X)satisfyingDirichlet'sconditionsasaFourier series. |
|  | $3^{\text {rd }}$ | 5.4.StateEuler's formulae |
|  | $4^{\text {th }}$ | 5.5.Define Even and Oddfunctionsand find Fourier Series in |
| 11TH | $1^{\text {st }}$ | 5.5.Define Even and Oddfunctionsand find Fourier Series in |
|  | $2^{\text {nd }}$ | 5.6.Obtain F.Sof continuousfunctionsand functionshavingpointsof discontinuity |
|  | $3^{\text {rd }}$ | 5.6.Obtain F.Sof continuousfunctionsand functionshavingpointsof discontinuity |
|  | $4^{\text {th }}$ | 5.7.Solve problemson 5.1-5.6 |
| 12TH | $1^{\text {st }}$ | 6.NumericalMethods <br> AppraiselimitationofanalyticalmethodsofsolutionofAlgebraic <br> Equations. |
|  | $2^{\text {nd }}$ | Derive Iterative formulaforfindingthe solutionsofAlgebraicEquationsby : <br> Bisection method <br> Newton-Raphsonmethod |
|  | $3^{\text {rd }}$ | Derive Iterative formulaforfindingthe solutionsofAlgebraicEquationsby : Bisection method Newton-Raphsonmethod |
|  | $4^{\text {th }}$ | 6.3.solve problemson 6.2 |
| 13TH | $1^{\text {st }}$ | 7.Finitedifferenceandinterpolation <br> Explainfinite difference and form table of forward and backwarddifference |
|  | $2^{\text {nd }}$ | 7.2.Define shift Operator and establish relation between\& difference operator. |


|  | $3^{\text {rd }}$ | 7.3.Derive Newton'sforward andbackward interpolationformulafor equal intervals |
| :---: | :---: | :---: |
|  | $4^{\text {th }}$ | 7.4.StateLagrange's interpretation formula forunequal intervals. |
| 14TH | $1^{\text {st }}$ | Explainnumericalintegrationand state: Newton'sCote's formula |
|  | $2^{\text {nd }}$ | Newton'sCote's formula |
|  | $3^{\text {rd }}$ | 7.5.2.Trapezoidalrule |
|  | $4^{\text {th }}$ | 7.5.2.Trapezoidalrule |
| 15TH | $1^{\text {st }}$ | 7.5.2.Trapezoidalrule |
|  | $2^{\text {nd }}$ | 7.5.3.Simpson's1/3rdrule |
|  | $3^{\text {rd }}$ | 7.5.3.Simpson's1/3rdrule |
|  | $4^{\text {th }}$ | 7.6.Solve problemson 7.1-7.5 |

